“(1) Parmenides-Leucippus: *Leucippus takes the existence of motion* as a partial refutation of Parmenides’s theory that the world is full and motionless. This leads to the theory of ‘atoms and the void’. It is the foundation of atomic theory.

(2) *Galileo refutes Aristotle’s theory of motion* : this leads to the foundation of the theory of acceleration, and later of Newtonian forces. Also*, Galileo takes the moons of Jupiter and the phases of Venus as a refutation* of Ptolemy, and thus as empirical support of the rival theory of Copernicus.

(3) *Toricelli (and predecessors*) : *the refutation of ‘nature abhors a vacuum*‘. This prepares for a mechanistic world view.

(4) Kepler’s refutation of the hypothesis of circular motion upheld till *then (even by Tycho and Galileo), leads to Kepler’s* laws and so to Newton’s theory.6

(5) Lavoisier’s refutation of the phlogiston theory leads to modern chemistry.

(6) *The falsification of Newton’s theory of light* (Young’s two- slit experiment). This leads to the Young-Fresnel theory of light. The velocity of light in moving water is another refutation. It prepares for special relativity.

(*7) Oersted’s experiment is* interpreted by Faraday as a refutation of the universal theory of Newtonian central forces and thus leads to the Faraday-Maxwell field theory.

(*8) Atomic theory: the atomicity of the atom is refuted by* the Thomson electron. *This leads to* the *electromagnetic theory of matter, and, in time*, to the rise of electronics. See Einstein’s and Weyl’s attempts at a monistic (‘unified’) theory of gravitation and electromagnetics.

(*9) Michelson’s experiment (1881-1887-1902, etc.) leads to* *Lorentz’s *Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern (1895: see §89). Lorentz’s book was crucially important to Einstein, who alluded to it twice in §9 of his relativity paper of 1905. (*Einstein* himself did not regard the Michelson experiment as very important.) *Einstein’s special relativity theory is (a) a development* of the formalism founded by Lorentz and (b) a different—that is, relativistic—interpretation of that formalism. There is *no crucial experiment so far to decide between Lorentz’s and Einstein’s* interpretations; but if we have to adopt action at a distance (non-locality: see Quantum Theory and the Schism in Physics, Vol. III of the Postscript, Preface 1982), then we would have to return to Lorentz.

*Incidentally, it took years before physicists began to come to some* agreement about the importance of Michelson’s experiments: I do not contend that falsifications are usually accepted at once (see the preceding section) *not even that they* are immediately recognised as potential falsifications.

(10) *The ‘chance-discoveries’ of Roentgen* and of Becquerel refuted certain (unconsciously held) expectations; especially Becquerel’s expectations. They had, of course, revolutionary consequences.

(*11*) *Wilhelm Wien’s* (*partially) successful* theory of black body radiation conflicted with the (partially) also very successful theories of SirJames Jeans and Lord Rayleigh. *The refutation by Lummer and Pringsheim of the* radiation formula of Rayleigh and Jeans, together with Wien’s work, leads to Planck’s quantum theory (see L.Sc.D., p. 108). *In this, Planck refutes his own theory, the absolutistic interpretation* of the entropy law, as opposed to a probabilistic interpretation similar to Boltzmann’s.

(*12) Philipp Lenard’s experiments concerning the photoelectric* effect conflicted, as Lenard himself insisted, with what was to be expected from Maxwell’s theory. *They led to Einstein’s theory of light-quanta or photons (which were of course also* in conflict with Maxwell), and thus, much later, to particle- wave dualism. (

(*13) The refutation of the Mach-Ostwald anti-atomistic and phe*– *nomenalistic theory of matter*: Einstein’s great paper on Brownian motion of 1905 suggested that Brownian motion may be interpreted as a refutation of this theory. *Thus this paper did much* to establish the reality of molecules and atoms. (14) Rutherford’s refutation of the vortex model of the atom.8 This leads directly to Bohr’s 1913 theory of the hydrogen atom, and thus, in the end, to quantum mechanics.

(14) Rutherford’s refutation of the vortex model of the atom.8 This leads directly to Bohr’s 1913 theory of the hydrogen atom, and thus, in the end, to quantum mechanics.

(15) *Rutherford’s refutation (in 1919*) of the theory that chemical elements cannot be changed artificially (though they may disintegrate spontaneously).

(*16) The theory of Bohr, Kramers and Slater (see L.Sc.D., pp. 250, 243): this theory was refuted* by Compton and Simon. The refutation leads almost at once to the Heisenberg-Born- Jordan quantum mechanics.

(*17) Schrodinger’s interpretation* of his (and de Broglie’s) theory is refuted by the statistical interpretation of matter waves (experiments of Davisson and Germer, and of George Thomson, for instance). This leads to Bom’s statistical interpretation.

(18) Anderson’s discovery of the positron (1932) refutes a lot: the theory of two elementary particles — protons and electrons — is refuted; conservation of particles is refuted; *and Dirac’s own original interpretation of his predicted positive particles* (he thought they were protons) is refuted. Some theoretical work of about 1930-31 is thereby corroborated.

(19) The electrical theory of matter *elaborated by Einstein* and *Weyl*, and held implicitly — *and at any rate, pursued — by Einstein* to the end of his life (since he interpreted the unified field theory as a theory of two fields, gravitation and electromagnetics),is *refuted by the neutron and by Yukawa’s theory of nuclear* forces: the Yukawa Meson. This gives rise to the theory of the nucleus.

(*20) The refutation of parity* conservation. (See Allan Franklin, Stud. Hist. Philos. Sci. 10, 1979, p. 201.)”