Random Refutations

“(1) Parmenides-Leucippus: Leucippus takes the existence of motion as a partial refutation of Parmenides’s theory that the world is full and motionless. This leads to the theory of ‘atoms and the void’. It is the foundation of atomic theory.

(2) Galileo refutes Aristotle’s theory of motion : this leads to the foundation of the theory of acceleration, and later of Newtonian forces. Also, Galileo takes the moons of Jupiter and the phases of Venus as a refutation of Ptolemy, and thus as empirical support of the rival theory of Copernicus.

(3) Toricelli (and predecessors) : the refutation of ‘nature abhors a vacuum‘. This prepares for a mechanistic world view.

(4) Kepler’s refutation of the hypothesis of circular motion upheld till then (even by Tycho and Galileo), leads to Kepler’s laws and so to Newton’s theory.6

(5) Lavoisier’s refutation of the phlogiston theory leads to modern chemistry.

(6) The falsification of Newton’s theory of light (Young’s two- slit experiment). This leads to the Young-Fresnel theory of light. The velocity of light in moving water is another refutation. It prepares for special relativity.

(7) Oersted’s experiment is interpreted by Faraday as a refutation of the universal theory of Newtonian central forces and thus leads to the Faraday-Maxwell field theory.

(8) Atomic theory: the atomicity of the atom is refuted by the Thomson electron. This leads to the electromagnetic theory of matter, and, in time, to the rise of electronics. See Einstein’s and Weyl’s attempts at a monistic (‘unified’) theory of gravitation and electromagnetics.

(9) Michelson’s experiment (1881-1887-1902, etc.) leads to Lorentz’s Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern (1895: see §89). Lorentz’s book was crucially important to Einstein, who alluded to it twice in §9 of his relativity paper of 1905. (Einstein himself did not regard the Michelson experiment as very important.) Einstein’s special relativity theory is (a) a development of the formalism founded by Lorentz and (b) a different—that is, relativistic—interpretation of that formalism. There is no crucial experiment so far to decide between Lorentz’s and Einstein’s interpretations; but if we have to adopt action at a distance (non-locality: see Quantum Theory and the Schism in Physics, Vol. III of the Postscript, Preface 1982), then we would have to return to Lorentz.

Incidentally, it took years before physicists began to come to some agreement about the importance of Michelson’s experiments: I do not contend that falsifications are usually accepted at once (see the preceding section) not even that they are immediately recognised as potential falsifications.

(10) The ‘chance-discoveries’ of Roentgen and of Becquerel refuted certain (unconsciously held) expectations; especially Becquerel’s expectations. They had, of course, revolutionary consequences.

(11) Wilhelm Wien’s (partially) successful theory of black body radiation conflicted with the (partially) also very successful theories of SirJames Jeans and Lord Rayleigh. The refutation by Lummer and Pringsheim of the radiation formula of Rayleigh and Jeans, together with Wien’s work, leads to Planck’s quantum theory (see L.Sc.D., p. 108). In this, Planck refutes his own theory, the absolutistic interpretation of the entropy law, as opposed to a probabilistic interpretation similar to Boltzmann’s.

(12) Philipp Lenard’s experiments concerning the photoelectric effect conflicted, as Lenard himself insisted, with what was to be expected from Maxwell’s theory. They led to Einstein’s theory of light-quanta or photons (which were of course also in conflict with Maxwell), and thus, much later, to particle- wave dualism. (

(13) The refutation of the Mach-Ostwald anti-atomistic and phenomenalistic theory of matter: Einstein’s great paper on Brownian motion of 1905 suggested that Brownian motion may be interpreted as a refutation of this theory. Thus this paper did much to establish the reality of molecules and atoms. (14) Rutherford’s refutation of the vortex model of the atom.8 This leads directly to Bohr’s 1913 theory of the hydrogen atom, and thus, in the end, to quantum mechanics.

(14) Rutherford’s refutation of the vortex model of the atom.8 This leads directly to Bohr’s 1913 theory of the hydrogen atom, and thus, in the end, to quantum mechanics.

(15) Rutherford’s refutation (in 1919) of the theory that chemical elements cannot be changed artificially (though they may disintegrate spontaneously).

(16) The theory of Bohr, Kramers and Slater (see L.Sc.D., pp. 250, 243): this theory was refuted by Compton and Simon. The refutation leads almost at once to the Heisenberg-Born- Jordan quantum mechanics.

(17) Schrodinger’s interpretation of his (and de Broglie’s) theory is refuted by the statistical interpretation of matter waves (experiments of Davisson and Germer, and of George Thomson, for instance). This leads to Bom’s statistical interpretation.

(18) Anderson’s discovery of the positron (1932) refutes a lot: the theory of two elementary particles — protons and electrons — is refuted; conservation of particles is refuted; and Dirac’s own original interpretation of his predicted positive particles (he thought they were protons) is refuted. Some theoretical work of about 1930-31 is thereby corroborated.

(19) The electrical theory of matter elaborated by Einstein and Weyl, and held implicitly — and at any rate, pursued — by Einstein to the end of his life (since he interpreted the unified field theory as a theory of two fields, gravitation and electromagnetics),is refuted by the neutron and by Yukawa’s theory of nuclear forces: the Yukawa Meson. This gives rise to the theory of the nucleus.
(20) The refutation of parity conservation. (See Allan Franklin, Stud. Hist. Philos. Sci. 10, 1979, p. 201.)”
That is an interesting list of scientific refutations provided by Popper himself. Popper  was right to suggest that the new theories highlighted above were not direct results of the refutations. The refutations merely created new problem situations which stimulated imaginative and critical thought by thinking men. But this initial stage of conceiving a new theory is not susceptible for logical analysis.”The question how it happens that a new idea occurs to a man  … may be of great interest  to empirical psychology ; but it is irrelevant to the logical analysis of scientific knowledge” (See Popper, K., The  Logic of Scientific Discovery,1934,  p. 7). That is because the latter does not concern with quid facti but with quid juris.


Now there’s a few things worth clarifying as some basic misunderstandings have led some people to abandon rationalism in scientific theory. First it is never possible to prove conclusively that an empirical scientific theory is false – all falsifications are tentative (see for example Popper, K., Die beiden Grundprobleme der Erkenntnistheorie,  – written 1930-33).  Empirical sentences can be logically falsifiable but they can never be demonstrably (or conclusively) falsifiable. Falsifiability in the former sense is a term which declares that there is a logical relation between the theory and the class of basic statements. But the lack of falsifiability in the latter sense does not really contradict Popper’s theory neither it can be a cause of  scientific relativism.  The uncertainty of every empirical falsification should really not be taken too seriously.  Logical falsifiability implies that they exist in principle falsifiers that could weaken our belief in a theory. Finally Popper’s theory of science is not an historic explanation of how science evolves but it is instead a normative methodological proposal. As such it can not be refuted by the facts of the history of science. Nevertheless Popper’s theory is to a great extend (empirically) accurate too and that is obvious by seeing the examples above.
Tagged , ,

6 thoughts on “Random Refutations

  1. arcades says:

    Χρήσιμες επισημάνσεις. Όπως με τα paradigms του Kuhn, η falsifiability χρησιμοποιείται συχνά με ρηχό και απλουστευτικό τρόπο.

    • epanechnikov says:

      Καλώς τον Αρκάδα. Νομίζω πως εκτός από την χρήση συχνά και η κριτική στην μεθοδολογία των δύο γίνεται με τον ίδιο ακριβώς ρηχό τρόπο.

    • arcades says:

      Ε, μέχρι να υπάρξει η διάψευση του παραδείγματος 🙂

      Σοβαρά: η διαφορά είναι ότι η δουλειά του Kuhn δεν είναι αυστηρή μεθοδολογική πρόταση, θα την έλεγα ερμηνευτικό ιστορικό σχήμα.

      • epanechnikov says:

        Ωραίος ο αστεϊσμός σου 😉

        Ναι συμφωνώ. Η δουλειά του Kuhn περισσότερο ερμηνευτικό ιστορικό σχήμα μου φαίνεται από ότι οτιδήποτε άλλο. Κάτι τέτοιο δεν είναι η δουλειά του Popper και εκεί δημιουργείται κάποια σύγχυση.

  2. Versuch einer Theorie der ele/etrischen und optischen E rscheinungen in bewegten Ko’rpern

    Το σωστό είναι »Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern«.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s